Math 4550 Topic 7-First Isomorphism Theorem

Theorem (First Isomorphism Theorem)
Let
$$\varphi: G_1 \rightarrow G_2$$
 be a homomorphism
between two groups G_1 and G_2 .
Then, $G_1/(\ker(\varphi) \cong \operatorname{im}(\varphi))$

Claim 1:
$$\psi$$
 is well-defined.
Pf: Suppose $aH=bH$ for some $a, b \in G_1$.
Then, $b^{-1}a \in H$.
Since $H= Ker(Q)$ we have $\varphi(b^{-1}a) = C_2$
where C_2 is the identity of G_2 .
So, $\varphi(b)^{-1}\varphi(a) = C_2$
Thus, $\varphi(a) = \varphi(b)$.
Hence, $\psi(aH) = \varphi(a) = \varphi(b) = \psi(bH)$.
Hence, $\psi(aH) = \varphi(a) = \varphi(b) = \psi(bH)$.
Claim 2: ψ is an isomorphism
Pf: Let $a, b \in G_1$.
Then
 $\psi(aH)(bH)) = \psi(abH) = \varphi(ab)$
 $\psi(aH)(bH)) = \psi(abH) = \varphi(ab)$
 $\psi(aH)(bH) = \psi(abH) = \psi(aH) + \psi(bH)$.
Let's show that ψ is one-to-one.
Suppose $\psi(aH) = \psi(bH)$.

Then
$$\varphi(a) = \varphi(b)$$
.
So, $\varphi(b)^{-1}\varphi(a) = e_2$.
Thus, $\varphi(b^{-1}a) = e_2$.
So, $b^{-1}a \in \ker(\varphi)$.
Thus, $b^{-1}a \in H$.
Thus, $b^{-1}a \in H$.
Therefore $\psi(a) = bH$.
Thus, $\psi(a) = bH$.

Ex: Let
$$\varphi: GL(2, \mathbb{R}) \rightarrow \mathbb{R}^{*}$$

be defined by $\varphi(A) = det(A)$.
Recall that φ is a homemorphism
with $H = ker(\varphi) = SL(2, \mathbb{R})$.
Thus, $GL(2,\mathbb{R})/H = GL(2,\mathbb{R})/SL(2,\mathbb{R}) \cong \mathbb{R}^{*}$
Under the isomorphism $t(\binom{a \cdot b}{b}H) = ad-bc$
 $fL(2,\mathbb{R})/H$
 $fL(2,\mathbb{R$